Gayathri Ramesan

Currently pursuing Doctoral thesis at Max Planck Institute for Neurobiology of Behaviour - Caesar

	Personal information
Address	Max Planck Institute for neurobiology of Behaviour - Caesar gayathri.ramesan@mpinb.mpg.de +49-15214717150
	Research interests
	Theoretical neuroscience, dynamical systems, complex systems
	Education
2022–present PhD	Life-long learning in biological networks, Max Planck Institute for Neurobiology of Behaviour-Caesar, Under the supervision of Dr. Aneta Koseska, Cellular Computations and Learning
	Bachelor of Science-Master of Science, Major in Physics , Indian Institute of Science Education and Research (IISER) , Tirupati Secured 8.3 CGPA on a 10 point scale

PhD

Aug 2021- July 2022	
Title	Life-long learning in biological networks
Supervisor	Dr. Aneta Koseska
Objective	We propose to investigate natural computation with non-asymptotic transients in networks characterised with "ghost" or attractor ruin sets. We will investigate the generality of ghost-network computations as a basis for natural computations, life-long and on-the-fly learning.

Master's thesis

Aug 2021- July 2022TitleExplosive synchronization induced by environmentSupervisorProf Manish Dev Shrimali, Central University of RajasthanObjectiveTo investigate the onset and the mechanism beneath the explosive synchronization
(ES) transition through numerical methods in a network of dynamical systems.
We prefer to follow the adiabatic continuation method to trace out the hysteric
areas where ES occurs. At the outset, we wish to investigate the models displaying
limit cycle and chaotic dynamics.

(June 2021 - July 2021) Early warning signals for critical transitions in epidemics

Supervisor Prof G Ambika, IISER Tirupati

Description Early warning signals such as lag-1 autocorrelation, skewness etc were used to detect critical transition and formation of a second wave in the covid-19 time series of India. Later the presence of saddle escape transitions were also checked in the time-series.

Publications

- [1] **G. Ramesan et al.**, Explosive synchronization induced by environmental coupling (2022), *Physics Letters A*, 441, 128147.
- [2] D. Koch, A. Nandan, G. Ramesan et al., Beyond fixed points: transient quasistable dynamics emerging from ghost channels and ghost cycles, *under revision*
- [3] D. Koch, A. Nandan, G. Ramesan et al., Biological computations: limitations of attractor-based formalisms and the need for transients, *under revision*

Conferences/Workshops

- March 2023 *Participant:* Nonlinear Data Analysis and Modelling, Advances, Applications, Perspectives,
- April 2023 Workshop Mathematical Foundations of Biological Organisation, MFO, Oberwolfach
- November 2023 Condensed Complexity, *Poster:* Ghost Channels and cycles for transient quasistable dynamics

Languages

English, Malayalam, Hindi

Programming and Applications

Python - Pandas, NumPy, SciPy, Tensorflow, Matplotlib, Seaborn, Jupyter, Networkx, Scikit-learn

References

Dr Aneta Koseska

- \boxtimes aneta.koseska@mpinb.mpg.de
- +49 228 9656 390
 Lise Meitner Group leader
 Cellular Computations and Learning
 Max Planck Institute for NeuroBiology of Behaviour